USERS REFERENCE MANUAL

AUGUST 10, 1969

ON THE COVER — The area of the heavens around the Orion Constellation,
shown in the cover photograph made through the 120-inch telescope of the Lick
observatory, is also the region of observations with an infrared telescope de-
veloped by University of Minnesota astro-physicists. The infrared sensory equip-
ment reveals stellar bodies that could not be studied by conventional telescopes,
and it is expected to provide data on the birth of stars.

ALGEBRA I
USERS REFERENCE MANUAL

Edition 1

F. N. Bailey
J. Brann

R. Y. Kain

Department of Electrical Engineering
University of Minnesota
Minneapolis, Minnesota 55455

August 10, 1969

The work reported herein was supported by the National Aeronautics

and Space Administration/University Sustaining Grant NGL24-005-063

-~
-

Section

1.

TABLE OF CONTENTS

INTRODUCTION

1.1 The ALGEBRA Manipulation Problem

1.2 Applications

1.3 oOutline of Language Features

1.4 Organization of the Manual

Data Structures

2.1 Expressions

2.2 Monomials

2.3 Literal Polynomials and Rational Functions
The ALGEBRA Language

3.1 RF Names

3.2 ALGEBRA Expressions and Manipulation Statements
3.3 ALGEBRA Operations

3.4 Output

3.5 Indirect RF Names

The ALGEBRA System

4.1 ALGEBRA Statements

4.1.1 Statement storage and execution

4.1.2 Direct statements, programs and
procedures

4.1.3 Statement modifiers

4.1.4 The PAUSE statement

iii

10

12

13

13

17

19

22

23

24

25

25

27

30

36

TABLE OF CONTENTS (continued)

Section Page

4.2 System Commands 36

4.2.1 Statement reference 37

4.2,2 Mode and execution control commands 38

4.2,3 Editing Commands 38

4,2.4 Miscellaneous commands 40

5, Sample Programs 40

5.1 Loading Procedure 41

5.2 Simple Operations with Direct Statements 42

5.3 Sample Use of a Procedure 43

5.4 Generation of a Symbolic Lyapunov Function 44

6. References 48

7. Appendices “, 49
7.1 1Internal Representation of Polynomials, Rational

Functions and RF Names : 49

7.1.2 Representationbof monomial terms 50

7.1.3 Representation of polynomials _ 51

7.1.4 Representation of Rational Functions 53

7.1.5 Representation of RF Names 54

7.2 Diagnostic Messages 54

7.3 System Organization N 58

7.4 Command Summary 60

iv

1. INTRODUCTION

The ALGEBRA I language is an interactive language designed
for the symbolic manipulation of polynomials and rational functions.
It is written in SNOBOL 67, a dialect of SNOBOL3, and runs on the
SDS 940 under the COMSHARE* W-series Executive System. Due to
space limitations ALGEBRA I will not run in the current COMSHARE
.version of SNOBOL. However, it could be readily modified to run
under any SNOBOL3 or SNOBOL4 system with sufficient space available.
1.1 The ALGEBRA Manipulation Problem

Algebra manipulation is a relatively new area of computer
applications where one attempts to take advantage of the symbol
manipulating capabilities of the digital computer rather than its
arithmetic capabilities. Sinqe there are significant technical
problems where the algebraic manipulation required in analysis is
quite difficult, it is natural to seek the aid of the digital
computer in carrying out the analysis. However it should be
emphasized that the goal of this computation is usually manipulation
rather than solution. The computer performs symbolic manipulations
as instructed by the programmer, but it does not make decisions
about what manipulations are needed. This distinction between
problem solving systems and manipulation systems is important.

The former may reguire the latter but the converse is not true.

#COMSHARE INC., Ann Arbor, Michigan, sells time-shared service on

the SDS 940.

Since the goal of algebra manipulation is to aid the human
in complex symbol manipulation tasks, close cooperation between
man and machine is desired. Most of the decisions are to be made
by the man on the basis of data provided by the machine. Thus
an interactive or on-line situation is most productive. At
present this sort of environment is available at reasonable
expense only through the use of a time-shared system. 1In the
design of the ALGEBRA language the importance of man-machine
interaction has been a prime consideration and the operation of
the language on a time-shared facility has been considered a
necessity.

The basic idea of computér-aided algebra manipulation has
arisen in a number of different places. Early languages were the
FORMAC [2] language, a superset of FORTRAN, developed at IBM, and
the ALPAK [3] and ALTRAN [4] languages developed at Bell Telephone
Laboratories. In recent years a number of other languages have
been reported but almost all of these are batch processedblanguages
lacking the man-machine interaction so essential to the success
of this approach to problem solving. Notable exceptions are the
AMTRAN language [5] which runs on a dedicated computer system but
does provide for user interaction and the MATHLAB system [6] on
the Project MAC computer at MIT. ALGEBRA I is apparently the first
general purpose algebra manipulation language running on a

commercial time-shared computer system.

1.2 applications

Algebra manipulation languages are useful in solving problems
which involve long complex algebraic manipulation steps too tedious
for practical human hand computation. Since the machine can
perform error free manipulations of great complexity at high speeds,
it offers considerable extension of human performance. Applications
of this capability have been reported in:

1) determining equilibrium conditions in structural mechanics

2) perturbation solutions of nonlinear ordinary differential

equations

3) orbit calculations

4) studies of high energy particle interactions.

In most of the previous applications the required manipulation
steps were known but were £oo éomplex for hand calculations.

Thus an algorithm for the required algebraic manipulation could
be programmed on a batch-processing computer system to obtain the
desired results.

There exist other classes of problems where the required
manipulative steps are not known a priori and an algorithm for a
batch processed language cannot be described in advance. For
treating such problems an interactive system is required so that
the operator can view intermediate results and make decisions

about further processing steps on the basis of these intermediate

results. For these problems the algorithm must be developed
hueristically as the solution proceeds--possibly by trial and
error--under control of the man-machine team. It is for this
second class of algebra manipulation problems that the ALGEBRA
system is specifically structured. User-problem and man-machine
interaction have been given major consideration in all phases of
the system design.
1.3 Outline of Language Features

The ALGEBRA I language is designed for the manipulation of
polynomials and rational functions having numbers and parameters
in the coefficients and exponents. Polynomials and rational
functions are assigned names on input and may be referenced by
name in all further manipulation. Operations available to the user
are: addition, subtraction, multiplication, division and dif-
ferentiation of rational functions, plus integration of polynomials.
The user may also make substitutions of rational functions for the
variables in other rational functions. |

The input format is very flexible with normal mathematical
notation used wherever possible. Input statements may be executed
line by line or saved as blocks or programs to be executed at a
later time. Line editing features for stored blocks of statements

are also provided. Specially designated blocks called procedures

provide user defined "subroutines" of algebra manipulation state-
ments which can be called with rational functions as arguments.

No previous knowledge of SNOBOL or any other computer language
is required. It is intended that anyone familiar with college
algebra or calculus can learn to use the ALGEBRA system in a
negligible period of time. However, a more sophisticated user with
some knowledge of SNOBOL can include SNOBOL statements in his
ALGEBRA programs to provide for complex tests and conditional
branching.

1.4 oOrganization of the Manual

The ALGEBRA I manual is intended to provide potential users
with a detailed description of the language and the required data
format. Section 2 covers data format, Section 3 covers the syntax
and semantics of the ALGEBRA language, Section 4 describes the
operation of the ALGEBRA I system and Section 5 gives some example
programs. The various appendices in Section 7 describe important
details about system organization and operation. Diagnostics
are described in detail in Section 7.2 and a command summary is
included in Section 7.4.

The BNF meta-language is used on some places to describe
the language syntax. It is hoped that those not familiar with BNF
will find the associated word descriptions adequate for under-

standing the syntactic descriptions and learning BNF.

A new user who wants to learn the language rapidly can probably
benefit most from skimming Sections 2 and 3, reading Section 4
and then trying the system (get on the teletype) using Section 5
to learn the loading procedure and referring to the command
summary for further details.

2. Data Structures

The basic data element in the ALGEBRA language is the
algebraic monomial: a product of constants or parameters (col-
lectively termed the "coefficient") and variables with associated
exponents. Using standard algebraic notation a typical monomial
might be written as

+23X2Y3Z
This expfession may be considered a monomial in the variables X,
Y, 2, a monomial in Y, Z with X as a parameter, or any other

mathematically acceptable combination.* If the variables are X,

Y, 2 then +23 is the coefficient while if the variables are X, 2

*Note that the use of the word "variable" here is rather tricky.

The X, Y are not variables in the FORTRAN sense since the monomial
is data in the form of a string of symbols and X, ¥, Z are constants
in that data string. However, they are variables in the monomial.
To be very careful, one should probably define data variables and
language variables. However, since we would rather avoid this
pedantry, the word variablé will be used without modifiers when

the meaning is clear from context.

then +23Y3 is the coefficient. In ALGEBRA I data variables

and parameters mustbe represented by single letters and it is
usually necessary to make an explicit statement about which letters
are variables and which are parameters. From monomials we can
construct polynomials and rational function (ratios of polynomials)
by the usual rules of algebra [7]. The purpose of the ALGEBRA
system is to provide a tool for complex manipulations on the data-
monomials, polynomials and rational functions.

Ideally one would want the set of all possible data to be
closed under the set of allowable operations. This is the case
for example in the FORTRAN language where the set of data is the
field of real numbers: a set that is closed under the operations
of addition and multiplication. 1In the development of an algebra
manipulation system a similar result is obtained if the data is
the field of rational functions with real coefficients and the
operations are addition and multiplication. This set is closed
under these operations and it remains so if one allows the additional
operations of division, differentiation, and substitution of a
rational function for a variable. However, when one begins to
allow literal expressions including parameters in the coefficients
and exponents of the polynomials, practical limitations on the
complexity of the method of internal representation of the data
causes a breakdown in the desired closure properties. An analogous

breakdown in closure appears in numerical manipulation systems,

(e.g., FORTRAN, ALGOL) as a limitation on the size of the data
elements (numbers) which can be handled. 1In the ALGEBRA I system
this breakdown in closure appears as a limitation on the complexity
of literal expressions appearing in the data (polynomials and
rational functions) that is accepted as input or obtained as the
result of manipulation. This section gives a complete discussion
of the data limitations in ALGEBRA I. Unfortunately these limitations
are somewhat complex and not always as easy to remember as the
parallel limitations appearing in numerical langﬁages. However,
the user of simple polynomials with few parameters can be reasonably
certain tﬁat he will encounter no difficulty. The user of more
complex structures can either study this section in detail or let
the system diagnostics "teach" him the current data limitations.
Hopefully the built in tests on allowable data format will keep
him out of trouble.

Before proceeding it is worthwhile to point out one other
data format limitation occurring because of the physical limitations
of the teletype, which is currently the only available input/output
device. The monomial +23X2Y3Z discussed earlier would be expressed
to the ALGEBRA system on the teletype as

+23Xt2Y1 32 |

Any polynomial 5% rational function would have all of its monomials
expressed in an equivalent fashion as exponents must always be

indicated by t.

Since polynomials and monomials are special cases of rational
functions, the term RF will be used in the sequel to represent
the generic class of data-objects - monomials, polynomials, and
rational functions - treated by the ALGEBRA system. The term
rational function will always denote a non-degenerate rational
function (i.e., a ratio of polynomials).
2.1 Expressions

In the formation of monomials certain groups of terms called
expressions may be used. One kind of expression will be called a

coefficient expression. A coefficient expression is a string of

characters inside of parentheses and possibly having a numeric
exponent. Examples are:

(A+B+3XtB) t2

(COS (X+3)+3 (X+Y)) t3

(5 (X+Y)+3X+ (A12+4))

(A+3XY1t (5X+3))

(A+B+ (5X+Y) / (3X+2))
A coefficient expression may appear as a part of the coefficient

in a monomial. It is said to be convertible with respect to a

given set of variables* if the contents of the outer set of

parentheses is an RF in that set of variables conforming to the RF

*By this we mean letters which are understood to be variables

in the context in which this expression appears (see Section 3.1).

10

format limitations to be given below. In the examples given above
only the first, second and last expressions are convertible if
X, Y are variables.*

A second kind of expression used in monomial formation is

the exponent expression. The exponent expression is a polynomial

with no exponents, variables or parentheses included in an outer
set of parentheses. Examples are:
(-2a+3)
(4a+BC)
(-3c)
where A, B and C are not variables in the RF where these expressions
appear.
2.2 Monomials
The basic form for a simple monomial is
(coefficient) (variable) t (exponent)
Within the ALGEBRA I system the following restrictions on the

data format of simple monomials must be observed:

*The COS(X+3) term in the second expression will be treated simply
as a product of the three parameters C, O, and S time the coefficient
expression (X+3). The ALGEBRA I system does not recognize trans-

cendental functions.

11

1. Coefficients - may be numbers, parameters® or coefficient
expressions. Numbers may be in FORTRAN I or F formats.
Parameters may have exponents but the exponents must be
numeric. Coefficient expressions may havé‘exponents as
described in 3 below.

2. Variables - sipgle letters specified as variables by the
user. (The specification procedure is described in
Section 3.1 below.)

3. Exponents - an exponent expression, or a monomial of
numbers or letters not containing any exponents (the
+ sign may be omitted in this monomial), or variables.

An ALGEBRA monomial will now be defined as a signed con-

catenation of simple monomials whose component parts satisfy the

restriétions stated above. Thﬁs

(ALGEBRA monomial)s: = (sign){simple monomial)| (ALGEBRA monomial)
{simple monomial)

where (sign) is either a + or a - and the restrictions 1 through 3

above are observed. Unity coefficients and exponents may be

omitted and in the latter case the "t" is also omitted.

Because of the physical limitations of the teletype some

freedom available in mathematical notations is not available in

ALGEBRA., For example both

*Parameters are single letters which are not understood to be

variables in the context in which they appear (see Section 3.1).

12

+2X23Y and +2x23Y

might be translated into the form

+2X+23Y
at the teletype. To avoid this sort of ambiguity in the description
of monomials, all characters following an t, up to and including
the first) or up to but not including the next variable are
considered to be part of the exponent of the preceding variable.

Thus if X, ¥ are variables

+2X123Y - +2x°3y
while ‘

2 2
+2X+¢ (2)3Y ~ +2X°3Y = 6X°Y
+2X4 (-32+4)Y ~ pox 3Bty
+2X ¢ -3A4Y ~ +2x 128y

2.3 Literal Polynomials and Rational Functions
A literal polynomial is simply a concatenation of ALGEBRA
monomials.

(literal polynomial)::=(ALGEBRA monomial)|(literal polynomial)
‘ (ALGEBRA monomial)

Leading + signs can be omitted, if desired. The variables in a
literal polynomial are specified at the time of input as described
in Section 3.1. All other letters are assumed to be parameters.
Coefficient expressions appearing in a literal polynomial are
extracted by the algebra system and treated as separate terms

during most manipulation. In this way, expressions appearing in

13

the input may be preserved in the output of many manipulations.
Examples of literal polynomials are:
3X12+2XY+5 (A+3K) 12Y¢2
3(A/B+9)XWt (~2B+3)+7Xt2W+3
Literal rational functions are simply ratios of.literal

polynomials.
(literal rational function)::=((literal polynomial))/((literal polynomial)

When the numerator or denominator polynomials of a rational function
are simply unsigned monomials the parentheses may be omitted.
Examples of literal rational functions are:
(2X+2+3) / (-2 TX¥+32)
(a+3Bt2) /X
((2A+B) t2X+4) / (5A%+6)
In keeping with the previously mentioned policy of using the termm
RF to describe monomials, polynomials, or rational functions we

now define
(literal RF)::=(literal polynomial)|(literal rational function)

3. The ALGEBRA Languade

Statements in the ALGEBRA languagé are used to assign names
to RF and to describe manipulations to be performed upon the RF's
which are known to the system.
3.1 RF Names

In the description of manipulations on RF it is usually

convenient to use names rather than literal statements of RF value.

14

Names of the form Pn, where n is an unsigned integer, may be
assigned to RF by simple assignment statements of the form

(name) = (literal RF)
An example of a simple assignment statement is

P2 = 3Xt2+4XY+5
This statement assigns the name 22 to the literal RF appearing on
the right of the equal sign. |

At the timé the RF is assigned a name its set of variables is

also defined. Tﬁe set of vafiables for a specific RF may be
assigned both implicitly and explicitly. Ankexplicit variable
assignment is made by including an explicit variable list in
parentheses after the name in the left hand side of the assignment
statement. The assignment statement format is then

(name) ((explicit variable list)) = (literal RF)
Thus the assignment statement

P2(X,Y) = 3X1t2+4XY+5
defines P2 as the literal polynomial on the right with X, Y as
its explicit variable list. Letters appearing in the explicit

variable list are the explicitly assigned variables of the RF.

All letters which have been explicitly assigned as variables
in ALGEBRA statements are stored by the ALGEBRA system in a global
variable list called VAR. When a new RF name with an explicit

variable list is input, its explicit variable list is merged with

15

VAR so that at any time VAR contains all characters which have
been defined as variables since the system was initialized.* when
an assignment statement does not contain an explicit variable

list all letters appearing in the literal RF which are currently
on VAR are taken as variables for the RF. These letters are

said to be implicitly assigned variables of the RF.

Letters appearing in the literal RF part of an assignment
statement which are not on VAR or included in an explicit variable
list following the name are considered as parameters and are stored
by the ALGEBRA system in the global parameter list*#* which is
called PAR. If at any time a parameter (a letter contained on PAR)
is included in an explicit variable list, the warning message

PARAMETER USED AS VARIABLE
is printed to the user and the statement containing the erroneous
explicit variable list is rejected.

In general an RF may have both implicitly and explicitly
assigned variables. That is, some letters appearing an RF may be

explicitly assigned as variables because they appear in an explicit

#*The user may examine the contents of VAR with the command VARIABLES.
See Section 4.2 below.
*%*The syStem name for this string is PAR but the user may examine

it with the command CONSTANTS. See Section 4.2 below.

16

variable list while other letters may be implicitly assigned as
variables because they appear on VAR at the time the RP is named.
For example, if VAR contains X, Y then the assignment statement
P23 (X, W) = (3XtB+2W)/(5W+4W¢ 3+3Y)

defines P23 as the name of the literal rational function on the
right with X, W as an explicit variable list. Following acceptance
of this statement by the system, the string VAR contains X, ¥, W
and the letter B has been added to PAR. In this case the letters
X, W are explicitly defined variables of P23 and Y is an implicitly
defined variable.

The list of all variables appearing, both explicitly and

implicitly, in a literal RF is termed the local variable list

for the RF. In the above example the local variable list for P23
is X, ¥, W. This list is used in the generation of the internal
representation of the RF (Section 7.1). Moreover, all monomials
in the RF must satisfy the format restrictions of Section 2.2
with respect to its own local variable list. Thus if VAR contains
W, X, Y, 2 then the statement

P11(X,Y) = 3XtW+2XY
would have X, ¥, W as a local variable list and therefore has an

illegal format (variable in exponent). Note that the letters

P, D, I may not be used as data variables or parameters in the

ALGEBRA I system.

17

3.2 ALGEBRA Expressions and Manipulation Statements

An ALGEBRA expression is a mathematically correct combination
of RF, parentheses and operators. The operators which can appear
in ALGEBRA expressions are:

+ addition
- subtraction
* multiplication
/ division
// numerical division
D()/DX differentiation

I{)DX integration
Details about the operators and their operands are given in the
next section.

Since RF can be assigned names it is usually more convenient
to use RF names rather than literal RF in forming ALGEBRA expressions.
Thus in discussing ALGEBRA expressions the term RF will be assumed
to mean either RF names or literal RF. When an RF name appears in
an expression the inclusion of an explicit variable list is optional.
If one is included the ALGEBRA I system checks it against the
explicit variable list given when the RF name was assigned a value
(i.e., when the RF was defined). If the two do not agree a sub-
stitution is indicated as discussed in Section 3.3 below. If no

substitution is intended the inclusion of explicit variable lists

18

with names in expressions is acceptable but not recommended
because of the inherent typing and system checking delays. Examples
of ALGEBRA expressions are:

P2+P3-P10+P4(X,Y)

(P5-P7) *P8

2Xt2-3X+P5 (2X+3)

ALGEBRA expressions are used to describe manipulations to be
performed on literal RF and RF names. When RF are substituted for
the names appearing in an expression the prescribed manipulation
can be carried out and a result obtained. This result is termed
the value of the expression. The results of the manipulations
described by an ALGEBRA expression can be assigned a name with a
manipulation statement. The general form for a manipulation
statement is

(name)=(expression)
This statement assigns the value of the expression (i.e., the
result of the manipulation specified in the expression) to the
name on the left. For example

P3(X)=3Xt2+2X+5
followed by

P4=P3- (7X+100)
would give P4 the value

3Xt2-5X-95

19

3.3 ALGEBRA Operations
The operations available in ALGEBRA are basically the same
as those available in elementary calculus. First, there are the

four basic binary operators

addition +
subtraction -
multiplication *
division /

The arguments of these operators can be arbitrary ALGEBRA expressions.
Division of two polynomials simply converts them to a rational
function while the operations +, -, or * on rational functions

leads to the generation of new rational functions over a single
common denominator.

An additional binary operator, denoted by //, causes a
numerical division of the coefficients in an expression. For
example

P3=(expression)//5
would assign to P3 the value of the expression with all coefficients
divided by 5,

In addition to the above binary operators, there are unary +

and - operators and unary operators for the differentiation of RF

and integration of polynomials. Differentiation is indicated by

20

D (u)/Dv
and integration is indicated by
I (u)Dv
where u is an expression and v is a letter on the global variable

list.®* In integration the expression u must have as its value a

polynomial in which the variable of integration appears with only

numeric exponents. These numeric exponents may have a zero value
but may not be equal to -1. In addition, the variable of integration
may not appear in any coefficient expressions.

An additional operation available in ALGEBRA is substitution.
If Pn was originally defined with an explicit variable list then

Pn({expressionl), (expression2),...,{expressionk}))

has as value the new RF generated by substituting the indicated
expressions for the explicitly defined variables in Pn. Substitution
is made for the variables in the order in which they were given
in the original explicit local variable list. Substitutions of
this form cannot be used for implicitly defined variables or
parameters (however, see WITH modifiers - Section 4.13). Sub-
stitutions producing results which violate the data format
restrictions described in Section 2.2 or in cases where Pn contains
non-convertible coefficient expressions are illegal and are
rejected by the ALGEBRA system. A substitution where the number

of expressions included in the substitution operation

#The parenthesis may be omitted if u is a single name or monomial.

21

(i.e., the number k in the example Pn above) is less than the
number of variables'inzthe original explicit variable list is an
illegal null substitution. In the oppbsite case where there are
too many expressions to be substituted the excess exéressions are
ignored and the substitution is excepted. An appropriate diagnostic
indicates what type of illegal substitution has been attempted
‘(see Section 7.2).
' Some examples of acceptable manipulation statements using
the above operators are:
P1=5X+D (P3*P4+P5) /DX
P3(X,Y)=((P4+5XY) *P7)//7
P8=D (P4+I (5YZ*P3)DY) /DX
P9=P4+1I (P3(P4,P3))DY
The usual precedence rules for opefators in algebra apply. The
numerical division has the same precedence as division and succes-
sive divisions are performed from right to left. That is
P1=p4/P3/P2/P5
means
Pl=p4/(P3/(P2/P5))
Parentheses, () and [}, may be used freely to indicate
seguencing. Parentheses surrounding literal RF appearing in
ALGEBRA expressions do not lead to the introduction or coefficient

expressions in the RF involved. For example in

22

P1=p5- (7X+3 (A+2)Y)
the term 7X+3(A+Z)Y is not treated as a coefficient expression
but the term A+Z is treated as a coefficient expression. To
avoid confusion all multiplications in ALGEBRA expressions involving
anything more complex than constants and variables must be expressed
by the * operator.
3.4 Output

A manipulation statement containing an expression on the left

hand side of an equal sign and null on the right hand side is
intefpreted as a request for output of the value of the expression
on the left. In this case the value of the expression on the left
is computed and printed on the current output medium (usually the
teletype) but no naming of this value takes place. The output is
normally preceded by a copy of the expression on the left. For
example, if

P1=2X+3

P2=4Xt2+2X
then the manipulation statement

Pl=
would produce the output

Pl=2X+3
the manipulation statement

2%Pl+P2=

23

would produce the output

2%P14P2=4K 4 2+6X+6
and

P1+3XY=
would produce the output

P1l43XY=2X+3+3XY

It is sometimes desirable to suppress the copy of the request

so that only the value requested is printed. This can be indicated
by enclosing the output request in square brackets. Thus the
manipulation statement

[p 1] -
would produce the output

2¥%+3
and

[pl@-pz}
would produce the output

4t 24+4X+3
3.5 Indirect RF Names

The RF names mentioned previously (Section 3.l1) were limited

to the form Pn where n was a positive integer. More general RF
names may be used in the fomm

P[(expression)]
where the value of the expression is used to determine the RF

name. Thus

24

P:I]=l

p[J]=2

P:P[I],P[J]](X,Y)=3x+4Y?2

may be used to generate subscripted RF names.
In another example, if
Pl=2X1¢2+3XY+4Y1¢2
P2=2
P3=5
P4=2%P2+P3
then
P[P4]=27X?2+5Y
would assign the name P9 to the literal RF on the right. Similarly
the output request
[p[p3-2*pz]\=
would produce the out;ut
2X 1t 24+3XY+4Y12
Indirect RF names may appear anywhere where RF names are legal.
4, The ALGEBRA System
The ALGEBRA system must be loaded under the current version
of SNOBOL 67. A description of the structure of ALGEBRA I and
the SNOBOL subroutines used in the ALGEBRA system is given in
Section 7.3. A precompiled version of the ALGEBRA I system created
with the STORE command in SNOBOL 67 is usually available and can
be loaded and run without compilation. Loading procedure is

described in Section 5.1.

25

When completely loaded the ALGEBRA system responds with a
short version message and then spaces over 4 spaces and prints
a \ in column 5 indicating it is ready for user input. The user
may then type ALGEBRA Statements or Commands.
4,1 ALGEBRA Statements
The basic format for an ALGEBRA Statement is

{label) :(modifier) (manipulation statement):{(goto)
where the label is an arbitrary string of characters (except colons)
followed by a colon, the modifier is one of the modifiers to be
described below (Section 4.1.2), the manipulation statement describes
any of the legal manipulations covered in Section 3 and the goto
is a label preceded by a semicolon. Blanks may be added arbitrarily
and the statement is terminated with a carriage return (CR). One
or more of the elements of a statement may be omitted. Some example
statements are:*

\P1(X,Y)=3Xt2Y+2 cr

\MPL:WITH Y=3!P3=P1*P1;MP10 cr

\AX1l:;AXg cr

\:BQl cr

\ABC:P4=5#%P1+3%P2 cr

\AX2:P4+4Pl= cr
4.1.1 Statement storage and execution

Statements without labels and not preceded by labeled state-

ments are not stored by the ALGEBRA system. In the normal operation

#The \ is included for clarity in the examples although not typed

26

(execute mode) such statements are executed immediately after
receipt and then discarded. If they require output the output
is given immediately after execution is completed. Once a label
is encountered the ALGEBRA system starts saving input statements.
All future statements are then saved (even unlabeled statements)
until an END statement is encountered.* After an END statement
unlabeled statements are again discarded until a label is en-
countered.

Independent of the statement saving features mentioned above
is an execution control feature. In the normal execution mode
all statements are executed immediately after input. The
alternate procedure is the read mode in which statements may be
saved without execution. In the read mode saved statements will
not be executed until called as a procedure or executed via a T@
command (Section 4.2.2). The execute or read mode may be set
with the R and X commands described in Section 4.2 below.

Combinations of the above op;ions on statement saving and
execution give four different modes of operation in the ALGEBRA I
system:

Mode 1. Statements executed (mode X) and discarded - this mode is
for the generation of simple results and non-repetitive

operation.

*The meaning of the END statement is explained in the next section.

27

Mode 2. Statements saved and not executed (mode R) - this mode is
for the construction of blocks of statements to be
executed at a later time.

Mode 3. Statements executed (mode X) and saved - this mode is
for the construction of blocks of statements for possible
later execution and provides checking the results as the
block is constructed.

Mode 4. Statements discarded and not executed (mode R) - this
mode is of little value.

Modes 2 and 3 provide for the construction of blocks of state-
ments to be executed as programs or procedures (subroutines).

The use of these features is considered in the next section.

4.1.2 Direct statements, programs and procedures

Statements executed but not saved in mode 1 may be called
direct statements. Examples of a set of direct statements might
be and the resulting output® are:

\P1(X,Y)=2X+3Yt2 cr
\P2=2X¥+5 cr
\P2 #DP1/DY= cr
P2*DP1/DY=12XYt2+30Y
Note that all statements are executed and output requests answered®

immediately after the terminating CR. If the first of the above

statements were labeled or a labeled statement had preceded them

*Response to output requests are started in column 1, while the

- — (A1)

ready symbol ("\") appears in column 5.

28

then these statements would still be executed immediately but they
would also be saved so that they could be re-executed later.
An ALGEBRA program is a block of statements terminated by an
END statement: a statement of the form
(label):END
where the label is optional. It may be executed by using the Tg
command (Section 4.2) or by execution of a direct statement
containing a goto to a statement in the program. An ALGEBRA
program is roughly equivalent to a SNOBOL or FORTRAN program.
Saved statements can be executed, deleted, edited, appended to,
or printed on the teletype by using the commands given below
(Section 4.2). A program may be created in mode 2 or 3 of Section
4.1.1. The latter mode allows the user to test the program by
examining the intermediate results of one test case as the program
is being written. As an example of a program the saved statements
\Bl:P1l{X)=3X12+2X+9
\DP1/DX=
\END
could be saved in mode 2 or 3 and later executed with the statement
\T¢ Bl
Execution would terminate with the END statement even though other
saved statements followed. If an END statement is not encountered
execution terminates with the last saved statement (assuming it

does not contain a goto).

29

Saved statements may also form a procedure, roughly equivalent
to a function in SNOBOL or FORTRAN. A procedure is a block
of ALGEBRA statements terminated by a special END statement of
the form

{(label) :END PRn(Pl,...,Pm)=Pk;(entry label)

where the label is optional. The procedure name is PRn; where n
is an integer, Pl through Pm are dummy RF names of the arguments,
and Pk is the name of the RF whose value is assigned to the name
of the procedure when the procedure returns. The entry label is
the label of the entry point for the procedure. When a procedure
is called by the appearance of a procedure name in an expression,
current values of the dummy names used in the definition are saved.
Then any expressions appearing as arguments in the calling
statement are evaluated and assigned to the dummy names used in
the definition.’ Execution then begins at the entry point and
continues until an END statement (of either type) is reached. At
this point the RPF indicated in the definition (Pk in above) is
evaluated and its value assigned as the value of the procedure
name. The global values of the dummy names are then restored and
control is returned to the calling ALGEBRA statement for further
execution. The entry and exit processes are structured so that
procedures can be recursively defined, without any specific state-

ments by the user that he is making a recursion definition.

30

Procedure calls may occur in ALGEBRA statements in the same
manner as polynomial names and may have arbitrary ALGEBRA ex~
pressions as arguments. In all operations procedure calls are
treated as RF names and the value returned to the prbceduré name
is used in obtaining the value of any expression where the procedure
call appears.

As an example, the procedure

\SP:P1l(x)=3X+4X1+2
\P2=D (P1+P4*P5) /DX
\END PR1(P4,P5)=P2;SP
would assign the value of P2 to the name PRl when it was executed.
It might be called in an ALGEBRA statement of the form
\P12=P10+P11*PR1 (P8,P9+5*DP10/DX)
or it could call itself as in
\P12=P10+PR1 (PR1(P8,P9Y) ,P11+P9)
4.1;3 Statement modifiers

Three types of statement modifiers are available in the ALGEBRA I
system. The WITH modifier is used to provide for substitution for
variables and/or parameters before the manipulation is carried
out. The SNOBOL modifier is used to test results obtained,
provide conditional branching in ALGEBRA programs or call user
defined SNOBOL programs. The COMMENT modifier can be used to
print comments or titles in the output data. Any one or all

three types of modifiers may appear in a single ALGEBRA statement.

31

The basic format for the WITH modifier is described as follows:

(letter list)::=(letter)|(letter list),(letter)
(expression list)::=(expression)|(expression list),(expression)

(WITH modifier)::=WITH (letter list)=(expression list)!|
(WITH modifier)(letter list)=(expression list)!]
(WITH modifier)WITH (letter list)=(expression list)!
A typical example of a simple WITH modifier might be
WITH B=102C=5!
or the equivalent form
WITH B,C=10,5¢

This modifier might be used in the statements

\L1l:P1l(X)=3X1%242BX+C
\WITH B=10!C=5!Pl=

which would result in the output
P1=3Xt2+20X+5

In most cases when multiple substitutions are preseribed in one
WITH statement the substitutions are made simultaneously. This
means that

WITH B=CIC=A.
or equivalently

WITH B,C=C,A:
will replace all B's with C's at the same time that it is replacing
all C's with A. The resulting statement will contain both C's
and A's., This mode of substitution is in opposition to a sequential

mode where all B's are replaced with C's and then all C's are

32

replaced with A's. The result would then not contain any C's
since the last step replaces all C's with A's. While most sub-
stitutions made with the WITH modifier are simultaneous, limitations
on the manipulation roﬁtines in ALGEBRA I leads to the occurrence
of some sequential replacements. The specific rules for substitu-
tion are as follows:

l. Simultaneous substitutioh for all variables appearing
anywhere except in non-convertible coefficient expressions
(defined in Section 2.2).

2. Simultaneous replacement for all parameters except
sequential replacement for parameters appearing in
exponent expressions.

3. No substitutions are made into non-convertible coefficient
expressions.

When a non-convertible coefficient expression is detected during
an attempted substitution the substitution is interrupted and a

message indicating the conversion difficulties is output to the

user.

Multiple occurrences of the word WITH in the modifier can be

used to force sequential replacement operations. In this case
the right most WITH is completed first with execution of other
WITH's proceeding to the left. Thus the modifiers

WITH C=AIWITH B=C.

33

appearing in one statement would first cause B's to be replaced
by C’s and then C's to be replaced by A’s regardless of where
the B's and C's occurred (as long as they were not contained in
non-convertible coefficient expressions).

When WITH modifiers are used in statements containing pro-
cedures the WITH is applied to the value returned by the procedure
before the manipulation is executed. However, the WITH is not
applied to the procedure arguments before the procedure is evaluated.
Thus with PRl defined by

\L1l:P1=DP3/DX

\P2=P1+3Zt2

\END PR1(P3)=P2;Ll
the statement

\WITH X=Z!PR1l(3X12)=
produces the output

6Z+3242

WITH statements can be used to set the values of indirect
RF names if desired. Thus

\WITH J=2!P[J]=
outputs the value of P2 when executed.

A SNOBOL modifier allows one or more SNOBOL statements to

precede the manipulation.* The modifier format is

{SNOBOL modifier)s::=(SNOBOL statement)?|
{SNOBOL modifier) (SNOBOL statement)?

*A familiarity with SNOBOL 67 is required to understand parts of

the remainder of this discussion. See [l].

34

The ALGEBRA statement in which this modifier appears and any goto
appearing in that statement will be executed only if all the
SNOBOL statements in the modifier succeed. Failure of any one of
the SNOBOL statements will cause an immediate transfer to the next
(sequential) ALGEBRA statement in the program or procedure being
executed.¥* SNOBOL modifiers are quite useful in testing inter-
mediate results obtained in a program or procedure. Tﬁe results
of such tests can be used with gotos to provide conditional
branching in ALGEBRA programs.
Some special SNOBOL functions which can be called in a SNOBOL
modifier to examine values obtained in ALGEBRA statements are:
v('u?®) returns the value in ALGEBRA internal form of the
ALGEBRA expression, u. (See Section 7.1 for a
discussion of ALGEBRA internal form.)
N('v"®) succeeds if v is a RF in internal form which is
numeric. Returns this numeric value to N.
Note that single quotes are needed around the arguments of the
functions N and V since these are literal strings to the SNOBOL
system. Other SNOBOL functions defined by the user can also be
called in SNOBOL modifiers. An example illustrating the use of

a SNOBOL modifier or an ALGEBRA statement might be

*The SNOBOL statements should not have gotos as this would result
in a transfer out of the ALGEBRA system. This type of error will

cause a diagnostic message from the SN@B@L compiler.

35

\Pl=1
\LOOP1:P2=3*(P4+P1) *P5

\.Eé(N(v('pl')),'10')?¢our

\; LOOP1

\OUT:°"°"
Here Pl is used as a loop counter. When Pl=10, a transfer out
of the loop (to the ALGEBRA statement labeled OUT) is executed.
In another example, a loop containing

\V('P1¥P3') ‘'X3Y5'?P1%P3=
would cause a printout of the value of Pl times P3 whenever the
product contained a term of the form

Xt3Y+5

A COMMENT modifier prints a comment in the output when the

statement in which it appears is executed. The modifier format is

(COMMENT modifier)::="(character string)"|
(COMMENT modifier)" (character string)*

When a statement in which a comment modifier appears is executed
the character string appearing in the double quotes is printed
before the manipulation statement is executed. Thus an output
requested in the manipulation statement will appear after the
comment. For example, when executed the lines

\P1l(X)=3X42+4X+5
\Ll:"THE VALUE OF Pl=" [pl]a

will produce as output

THE VALUE OF Pl=3X4t2+4X+5

36

WITH, SNOBOL and COMMENT modifiers can be mixed in an arbitrary
fashion in the development of a general modifier. Thus

(modifier)::=(WITH modifier) ! (SNOBOL modlfler)‘(COMMENT modifier)|
(modifier)(modifier)

is the general modifier that can appear in an ALGEBRA I statement.
4.1.4 The PAUSE Statement
A special type of ALGEBRA statement which may appear in any
program is the PAUSE statement. It may have a label or modifier
but no goto. Thus the format for a PAUSE statement is
{label): (modifier)PAUSE
When this statement is executed the system prints the message
PAUSE AT p
where p is the label of the PAUSE statement or a preceding label
and a displacement, the system then returns to the ready symbol \.
At this point, the user may examine values with direct statements,
change values, etc. Execution may be restarted at the statement
following the PAUSE, or any other statement, by using the T@ or
START commands (Section 4.4.2).
4.2 System Commands
System Commands in ALGEBRA I provide the user with a capability
for control of system operation mode, execution of programs,
statement and program editing, program storage and program

retrieval.

37

The commands are described below by word name but in all
cases only the first letter of the word need be typed--all
remaining characters are ignored; Commands may be issued any time
the \ has been printed to indicate the system's readiness for
input. Certain commands require arguments, as described below,
and all commands (with possible arguments) must be terminated
with a CR. Lines containing system commands are not saved in any
system mode (Section 4.1.1).

4,2.1 Statement reference

Statement references required in execution commands and
editing commands may be given in any one of three forms:

1. By statement number. Statements are numbered sequentially
in the order in which‘they are saved. The first saved
statement is numbered "1".

2. By label, or label plus positive integer displacement.

3. By "$", which denotes the last line that has been saved.
Since not all lines are saved one must be careful to obtain the
correct line.‘ The PRINT command given below (Section 4.2.3)
may be used to examine a line when the user is in doubt.

Some examples of statement references are:

Ll statement with label L1.
L1+5 fifth statement after statement labeled Ll.
2 the second statement saved.

$ the last statement saved.

38

4.,2.2 Mode and execution control commands
The system execution mode (Section 4.1.1) may be modified

with the commands:

READ accepts ALGEBRA statement input without immediate
execution
X all input ALGEBRA statements are executed immediately

(normal mode)
The following commands may be used to execute saved blocks
of statements or to continue execution following a PAUSE. The
symbol p represents a reference to a saved statement in any of
the three forms described in Section 4.2.1.
™™ p begins execution of an ALGEBRA program starting at
statement p. This can also be used to restart a pro-
gram after a PAUSE is executed not inside a procedure.
START p used to restart after a PAUSE has been executed
inside a procedure.
4.2.3 Editing Commands
The simplest editing commands are the character and line editing
commands used to correct errors in input. (Ac or Qc means hit the

A or Qwhile depressing the control key on the teletype.)

C

A deletes the preceding character and
prints ¢. May be repeated an
arbitrary number of times to delete
a string of preceding characters.

Example: \Pl+?t52--- Typing A® after the ? causes ? to

A be deleted and t to be printed.
Input then proceeds as usual.

39

QC deletes the current line if it has

not been terminated with a CR. Prints
« to indicate deletion and then
causes a CR and line feed. The new
version of the line is thus begun
in column 1 (ALGEBRA input normally
begins in column 5)

Example: \P5 (3, * Typing Q° after * prints the «,

P2{(3,X)= deletes the line and causes a
line feed and CR to column 1 where
a new version of the line is begun.
Additional editing commands are used to modify already saved
blocks of ALGEBRA statements (see Section 4.1.1 about saving
statements). The general format for a statement editing command is
{(command name) (statement referencel),(statement reference2)
The comma can be replaced by a space if desired. When only one
statement location is needed the comma and the second location can
be omitted.
The statement editing commands are listed below. The p and
q are statement references, each in one of the formats described
in Section 4.2.1.

APPEND p prints the existing version of line p
to which the user may append additional
statement structures. The additional
material is typed immediately following
the printing of the existing version.
The addition is terminated with a CR.

Examples \Aa L1 prints the line labeled L1 to
Ll1:P3=P4+P2*P1l which the user may add a goto,
further manipulation, etc.,
terminated with a CR.
DELETE p.dq deletes statement p through statement q.

If g is missing, only statement p
is deleted.

40

EDIT p replaced statement p with the line
typed below the command.
Example: \E L1 replaces the original line labeled
L1:P4=P8+P5;L2 Ll with this line.

LABEL p,(label) puts the given label on statement p

Example: \L L1,Q2 changes label on statement L1 from
Ll to Q2.
\L L1+5,Q3 puts label Q3 on statement fifth

statement after L1

PRINT p,q prints statements p through ¢q on
teletype (starting in column one).
If g is missing prints line p.

4.,2.4 Miscellaneous commands

CONSTANTS causes printing of the word PARAMETERS:
followed by the current parameter list.

VARIABLES ' causes printing of the word VARIABLE:
followed by the current variable list.

WRITE p.q causes ALGEBRA statements p through g

ON /file/ to be written onto the disc in the
indicated file (ON is printed by the
system)

READ /file/ reads ALGEBRA statements from the

indicated file. Appends statements
from the file to existing saved

statements.
Examples: \WRITE L1,L1+5 writes ALGEBRA statements Ll through
ON /ALGP10/ L1+5 on disc file /ALGP1l0/.

\READ /ALGP10/ reads ALGEBRA statements from disc
file /ALGP1O/.

5. Sample Programs

This section provides some sample programs illustrating the

application of ALGEBRA I. ost of the features of the language

41

will be illustrated, but due to space limitations the applications
discussed will be rather elementary.
5.1 Loading Procedure

The ALGEBRA I system is loaded under SNOBOL 67, a special
version of COM-SHARE SNOBOL. It is here assumed that we have
already "logged in" to the COM-SHARE system and are communicating
with the COM-SHARE Executive. The necessary statements for loading
SNOBOL are as follows (statements typed by the user are underlined--
each user input is assumed to be terminated with a carriage
return--the cr for carriage return is only indicated in the examples
where its use as a line terminator might not be obvious.

-EXE 254SNg/SN@BOL/

SNOBOL 67 VER.6-3-69
NUMBER OF LITERAL STRINGS TO BE USED = cr

$READ
FROM 254SNg /ALGEBRA/

$:T:eT

ALGEBRA 1
VER. XXXXX

\

The - in the first line is the COM-SHARE Executive ready
symbol. The first line instructs the Executive to load and execute
the disc file containing the SNOBOL 67 program. The heading for
SNOBOL 67 then appears, followed by the SNOBOL 67 ready symbol $.
The READ tells the SNOBOL Executive to load the ALGEBRA I system

and the :T:T begins the execution of the ALGEBRA program. The

42

heading for ALGEBRA I then appears, followed by the backslash, \,
in column 5, indicating that the ALGEBRA I system is now ready to
accept statements or commands as described in Section 4 above.
5.2 Simple Operations with Direct Statements

The following lines illustrate some direct statement manipula-
tions. Note that all statements are typed after the \ in column 5,
while output from the computer starts in column 1. An exception
to this rule is the case where a line is deleted with Qc. The
deletion is indicated by a ~ followed by a carriage return and
line feed. The new version of the line is then started in column 1.

Here we start direct statements at the \.

\P1(X,Y)=X+2¥4$2
\P2 (X)=3Xt2
\P3=P1+3*DP2/DX
\P3=
P3=19X + 2Vt2
\P4(X,Y,Z)=X42+XY
\WITH X=EZ+FZ%12:P4=
P4=E+2Z42 + 2EFZ43 + Ft122Zt4 + EYZ + FYZ42
\P5=IP4DX-P3+P2*P1+100
\P 5=
P5=100 + 3.333333333Xt3 + 6X12Yt12 ~ 19X - 2Y$2 + 0.5X¢2Y
\IP3DY=
IP3DY=19XY + 0.6666666667¥t3
\"THIS IS THE P4 PPLYNgMIAL "[P4|=
THIS IS THE P4 POLYN@MIAL X142 +-

\P(2,?~ (- due to a Q)
P1{2,5)= {(correct version)
P1(2,5)=52
\P6=P1-IP4DY+3X*P2-DP5/DY
\R6=
P6o=- 13X¢2Y - 0.5X¢2 + 4Y + 943 - 0.5%X¥12 + X + 2¥+¢2
\ (type ESC followed by CR)

$ (type G°)

43

~-LOG

[
L]

TIME USED
CPU: 0.50 MIN
CON: 0.55 HOURS
Note that to leave the ALGEBRA I System you must do an ESC
followed by a CR. This leaves you in SNOBOL 67 from which you
exit to the COM-SHARE Executive with a G°. Then type LOG (for
log out) to the COM-SHARE Executive to disconnect from COM-SHARE.
The time you used is given at log out.
5.3 Sample Use of a Procedure
Assuming that “log in" is completed, the following example
illustrates the use of a procedure. This procedure generates
Chebyshev polynomials using a standard recursion relation. The
first part of this example is a listing (using the P1l,$ command)
of the procedure named PRl which has been input and saved in earlier
operations. The second part [starting at Pl9=PRl(5)] calls the
procedure to print out Chebyshev polynomials up to number 5. Note
how the procedure calls the N and V functions in a SNOBOL modifier
to test whether the number of polynomials requested (stored in P100)
is less than or equal to one.
\P_1,$
CPl: "CHEBYSHEV P@LYNZMIALS UP TO NUMBER “[9100]=
\Pl=1,
\P2=X
\P4=1

\.LE(N(V('P100"%)),*1%)2;CP20
\[p1]=

£ o, oI5

\[P2]=

44

\CP5:P3=2X*p2-P1
\P1=P2
\P4=pP4+1
\[p3]=
\.BEQ(N(V('P100°)) ,N(V(*P4°)).)2;:CP30
\P2=P3;CP5
\cP20: [p[P100+1]]=
\CP30: END PR1{P100)=Pl;CPl
\P19=PR1(5) "
CHEBYSHEV POLYNZMIALS UP TO NUMBER 5
1.
X
1. + 2%X12
- 3X + 4X1t3
8Xt2 + 1. + 8Xt4
20X4+3 + 55X 4+ 16¥15

5.4 Generation of a Symbolic Lyapunov Function

This is a rather complex example demonstrating the use of
the ALGEBRA language in the generation of symbolic Lyapunov functions.
The method of Lyapunov function generation illustrated is a modified
form of wWall's procedure [8], one of the many generation
techniques easily implemented in the ALGEBRA I system. This
example is included only to illustrate that the language has some

applicability to complex algebraic problems. It is not intended

to suggest that the procedure illustrated is an efficient approach
to Lyapunov function generation. Results relating to efficient
algebra manipulation techniques for Lyapunov function generation
will be published elsewhere.

This example uses a SﬁOBOL modifier which calls a réther
complex, user coded, SNOBOL function called FACT. The call to
FACT in this program simply returns to the RP name P199 the coef-

ficient of the polynomial P2 found in the polynomial P3. The FACT

45

function is listed below following the loading and running of
the Lyapunov generation program.

In this example the program is used to generate a Lyapunov
function for the following third order system of ordinary differential

equations:

oRe
i
asd

v =2

2
-y Z - 2 -y - X

z

the resgult is found to be

1 1
vix,y,2) = E'Xz + xy + %~y2 + E‘zz + yz + % 4
N 2 2
Vo= -y z

The program begins with user input of statements in READ mode.
(Marking of user input with underlining is dropped in this example.)
Following the END statement for PR1 the user switches to X mode
and inputs the differential equation. He then uses a T@ command
to start execution at the statement labeled VF. The output is
the result of integrating certain»functions of the right sides
of the differential equations along special paths in x,y,2 space.
These outputs are tested (using procedures described elsewhere)
for sign definiteness. The first output (denoted PATH XY¥Z and
enclosed in brackets) is found to be positive definite and thus

given a satisfactory Lyapunov function in this case.

SUCCESS

46

\R

\VDT: P20=DP10/DX*P1+DP10/DY*P2+DP10/DZ*P3
\END PR2(P10)=P20;VDT

\VF: FACT(V('P3*),Vv('P2'))?
\P4(X,Y,2)=-P3+P199%P2
\P5(X,Y,Z2)=-P3-P199*P1
\P6(X,Y,2Z)=P1+P2

\"Wl -] &4J=

\'w2 = *[p5]=

\"w3 = “[p6]=
\P12=IP4(X,0,0)DX+IP5(X,Y¥,0)DY+IP6DZ
\"PATH XYz V = "[P12]=

\"vDgT = " [PR2(P12]] =

\P12=IP4 (X,0,0)DX+IP6(X,0,2)DZ+IP5DY
\"PATH X2Y Vv = “[P12]=

\"VDgT = " [PR2(P12)]=
\P12=IP5(0,Y,0)DY+IP4(X,Y,0)DX+IP6DZ
\"PATH YXz2 V = "[P12]=

\"VDgT = " [PR2(P12)] =
\P12=1P5(0,Y,0)DY+IP6(0,Y,2)DZ+IP4DX
\"PATH YzZX V = ‘" [pPl2]=

\"VDgT = * [PR2(P12)] =
\P12=1P6(0,0,Z2)DZ2+IP4 (X,0,Z)DX+IP5DY
\"PATH 2XY¥ V = " [pl2]=

\"VDgT = " [PR2(P12)] =
\P12=2P6(0,0,2)DZ2+IP5(0,Y,2)DY+IP4DX
\"PATH Z¥X V = " [P12]=

\"VDgT = * [PR2(P12)] =

\END PR1(P97)=P4;VF

\Xx

\P1(X,Y,2)=Y

\P2(X,Y.2)=2

\P3(X,Y,2)=-Y12Z2-2-Y-X

\T@ VF
Wl = Y+ X
w2 = Y13 + 2Y + Y122 + 2 + X
W3 = Z+Y
PATH XYZ V= 0.5Zt2 + YZ + 0.25Y¢%4 + Y42 + XY + o.sxtz}
VDET = - Y122Z42
PATH XZY vV = 0.25Yt4 + Yt2 + 0.3333333333Y13Z + YZ + XY + 0.52t:
+ 0.5Xt2
VDET = - 0,3333333333Y152 - 0.333333333Y$3Z - 1.018634066Et (-10)Y?t:
Zt2 - 0.3333333333Yt4 - 0.3333333333XY*3
PATH YXZ V = 0.5Z¢2 + YZ + XY + 0.5Xt2 + 0.25Y%4 + Yt2
VD@T = - Yt2Z+¢2
PATH YZX V = XY + 0.5X¢2 4+ 0.5Z2¢2 + YZ + 0.25Y14 + Y+2

VD@T = - Yt2z12

47

PATH 2X¥ V.= 0.25Yt4 + ¥Y+2 + 0.3333333333Y+32 + Y2 + XY + 0.5X12
+ 0.52+2

VD@T = - 0.3333333333Y¥4¢52 - 0.333333333Y+¢3Z ~ 1.018634066E+t (~-10)Y+2
Z2+2 - 0.3333333333vt4 -~ 0.3333333333XY*3

PATH 2YX V = XY + 0.5%X12 + 0.25Y+4 + Y+2 + 0.3333333333Y¥+32 + YZ
+ 0.5Z¢2

VD@T = - 0.3333333333vt52 - 0.333333333Y+32 - 1.08634066Et (-10)Yv+2

Z+2 - 0.3333333333Yt4 - 0.3333333333XYt3

The user coded SNOBOL function FACT is listed below to
illustrate the use of SNOBOL statements in complex tests and
evaluations. The SNOBOL statements in FACT are simply loaded
(and therefore compiled) in SNOBOL 67 after the ALGEBRA 1 system
is loaded but before it is executed. (It is usually advisable to
erase the SNOBOL symbolics to save space - see [l].) After FACT
is loaded the ALGEBRA I system is executed (using $:T:T - see
Section 5.2) and any calls to FACT occurring in a SNOBOL modifier
in the ALGEBRA program are automatically recognized.

$SCF FactT(P,P1l;C,A,B,T,T1);Fl
Fl SaMeE(P,Pl,°®P*,*P1*') /(F10)
F6 T1 *\#* /F(F9)s(F20)
F8 $'::4199:T'~T1l /(RETURN)
FO $'::4199:T%'s:40: * /(RETURN)
F10 Pl #; '4=*% ®PL;VAR® *T% f:¢ =T] ;¢
Tl='s:s®

P tet *;'+..'* Bp&
F1l P *A:VAR®* *B¥% ':? %p% /F(F6)
.EQUALS (B,T) /F(F1l1)

TL = T1 A *:* /(F1l1)
F20 Pl #; t4-% #A:PAR ‘s '% #B% ¢
P o=

Tl=.NE{(A,'1*) NDVD(T1l,Rn)

LNULL(B) /s(F8)
F21 B #(A)* *C;PAR* *B%* /F(F23)

C .ANCHOR() ‘'-‘'='+' /S(F22)
C='-! C
F22 P=pP A C /(F21)
F23 T1=MUL(T1, '::+1* P °:') /(F8)

48

Note that FACT calls the SNOBOL function SAME, NDVD, and MUL which

are basic parts of the ALGEBRA I system. Their function is mentioned

in Section 7.3.

6.

References

1.

Kain and Bailey, SNOBOL 67: Users reference manual,
Edition 4. Department of Electrical Engineering, University
of Minnesota, Minneapolis, Minnesota 55455, May 1, 1969.
Sammet and Bond, Introduction to FORMAC. IEEE Trans. on
Electronic Computers, EC-13, 4 (1964).

Brown, Hyde and Tague, The ALPAK system for non-numerical
algebra on a digital computer, BSTJ, 42 and 43 (1963).
McIlroy and Brown, The ALTRAN language for symbolic algebra
on a digital computer, BSTJ,

Koehler and Eaton, The AMI'RAN programming system.
TR-792-8-292, Nortronics-Huntsville, Huntsville, Ala.,

Feb. 1968.

Martin, Symbolic mathematical laboratory. Ph.D. Thesis,
M.I.T., January 1967.

Birkhoff and MacLane, A survey of modern algebra,

MacMillan Co., New York, 1953.

Wall and Moe, An energy metric algorithm for the generation

of Lyapunov functions. IEEE Trans. on Auto. Cont., AC-13,

p. 121, Feb. 1968.

49

7. Appendices
7.1 1Internal Representation of Polynomials, Rational Functions and

RF Names

The external language with which the user communicates with
the ALGEBRA I system has been chosen for maximum user convenience
and similarity to hand written algebra notation. However, since
such notation is not the most convenient form for the manipulations
to be carried out by the computer a conversion from external to
internal form is carried out. For literal RF the external to
internal conversion is handled by a subroutine called CONEI
while RFtnames are converted to internal form by the ALGEBRA I
Executive (REXEC). Since the user may, in some cases, need to
deal with the internal representation of RF or RF names--for example
if he uses the V function (Section 4.l1l) or defines a new RF in a
SNOBOL modifier--the following paragraphs‘describe the internal
representations employed in ALGEBRA I. An appreciation of the
internal representation of literal RF also helps to explain some
of the limitations on data format given in Section 2.

The internal to external conversion of RF is handled by a
subroutine called CONIE. Some scrambling of terms is inevitable
but every attempt is made to cellect like terms whenever possible
so that the output format is relatively neat and similar to the

results expected in hand manipulation.

50

7.1.2 Representation of monomial terms
A polynomial is represented as a string of monomial terms so
in this discussion the major emphasis will be placed on internal
representation of monomial terms.
The internal representation of a monomial term has the form
(sign)(coefficient)(variable or expression)(exponent)e--
...{variable or expression)(exponent):
For example if X, Y, Z are variables and A, B, C' are parameters:
3Xt2Y+32 is represented as +3X2Y321:
-3X¢ (2A+B)4YZ is represented as -12X2A+1BY1Z1:

If there are any parameters appearing in the coefficient they may

have numeric exponents which are represented as above. For example:

3A12X42Y is represented as +3A2X2Y1:
coefficient expressions are removed from the monomial and

replaced by dummy names denoted by integers inside of exclamation
marks, such as "!3!" Each integer corresponds to a different
coefficient expression. For example:

-17A(2B+C)12X+3 is represented as «178122A1X3:
where the !1! represents the expression (2B+3) and the 2 indicates
the fact that the expression is squared. (Note that exponent
expressions are not replaced by dummy names but coefficient
expressions are replaced by dummy names.) More examples are:

=23A42(3X+2) 1 (2A+1) X1t (3A+2) Y (224+5X)

51

is represented as -23J2:2A+1!3!1A2X3A+2Y1:
where (2! represents 3X+2 and !3! represents 22Z+5X. Similarly,
+15A¢1 3Xt (27B-C)6BYt -3Z¢ (~234)

is represented as +90A3B1X27B-1CY~-3Z-2A:
7.1.3 Representation of polynomials

Since polynomials are simply strings of monomials, the repre-
sentation is likewise a string of monomial representations. How-
ever there are two additional requirements. First, each polynomial
carries with it a local variable list (see Section 3.1). This local
variable list appears at the beginning of the internal representation.
Second, each monomial in the polymomial must include all variables
in the local variable list. Those not actually appearing in the
external monomial representation are written in the internal form
with a zero exponent. Variables in the internal representation
of a polynomial always appear in each monomial in the same order
in which they appear on the local variable list while the local
variable list is ordered according to the sequence ofvoccﬁrrence,
of its variables in the global variable list VAR. This order
corresponds to the brdar of their declarations as variables in

statements as they are executed (Section 3.1).

The general form for internal representation of a polynomial
is

¢ (variable list):(monomial)(monomial)---{(monomial)

52

If it is assumed that the global variable list VAR contains only
X, ¥ then
PL(X,Y)=3WXt2Yt-3+2 (A+B) $ 2XY+27X+5
is represented as :XY:+3WlX2Y¥-3:+22122X1¥1:+27X1Y0:+5X0Y0:
P2(X,Y)=3 ~ is represented as ;XY:+3XOY0:
but
P3=3 is represented as ::+3:
However if the global (system) variable list VAR contains XYWZ then
P4=27X+3Y is represented as :XY:+27X1Y0:+3X0Y1:
while
P5=272Z+3X is represented as s XZ:+27X0Z21:+3X120:
Note that the letters on the local variable list always appear in:
the same order as they appear on the global variable list. However,
manipulations can increase the size of the local variable list of
any polynomial.
If VAR contains XYWZ then
P7(X,¥)=9 (A+B) t 2Bt 3Xt (2+B) Y+3Wt 2X4Y+7
is represented as
sXYW:49!2!2B3X2+1BY1WO: +12X1Y¥1W2:+7 XOYOWO:
Here the W is included in the polynomial variable list because it
is on the globél variable list (i.e., it is an implicitly defined

variable of P7).

53

7.1.4 Representation of Rational Functions
Since rational functions are ratios of polynomials, their
internal representation is simply a modification of the representa-
tion of two polynomials. The general form for the internal
representation of a rational function is
/{polynomial)/{polynomial)
There is an additional requirement that both polynomials in an
internal rational function must have the same local variable list.
Note that an input which is in mixed form externally such as
P1(X,¥Y)=X+¥/(3%+2)+4Y |
is transformed to a ratio of two polynomials (put over a common
denominator) before conversion is completed. Thus the internal
representation of the Pl above would be the same as the internal
representation of
P2 (X,Y)=(3X+2+2X+12XV+9Y) / (3X+2)
The common internal representation would be
/s XY¥:+3X2Y0: +2X1¥0:+12X1¥1: +9X0Y¥1: /: X¥: +3X1Y0:+2X0YO0::
It is important to note that mixed functions of apparently simple
form may require many symbols for their internal representation.
An exception to the above rules on representation of rational
functions occur when the denominator is purely numeric. It is
then divided out to reduce the rational function to a single

polynomial.

54

7.1.5 Representation of RF Names

RF names are internally represented by the P number or indirect
name value converted to internal form followed by the name tag
“p® . Thus P5 is represented by ::+5:T where ::+5: is the internal
representation of the literal polynomial 5. Similarly if VAR
contains X, Y then P[J] is represented by ::+1J1:T while P[3xt2+2}
is represented by :X:+3X2:4+2XO:T. Thus a SNOBOL statement of the
form $°ss+12: T '=:sXV:+3X1¥2:-2X0Y1:4+10X0YO:
is the internal representation®* of the ALGEBRA statement

Pl2=3XY+2-2Y+10

7.2 Diagnostic Messages

This section gives a complete listing and explanation of all
diagnostic messages generated in the ALGEBRA I system. The messages
are listed alphabetically. Each message is followed by a listing
of the source subroutine (in parenthesis), and a short comment
about the error. For an explanation of source subroutine names
and subroutine functions see Section 7.3.

When an error is detected the proper message(s) is printed on
the teletype, if execution is in progress it is halted and the

system returns the \ indicating it is awaiting further input.

*The indirection is required here because the symbol + is not

allowed in explicit names in SNOBOL 67.

55

CANN@T DIFF. WITH RESPECT T@ A PAR. (DIF)

Differentiation allowed only with respect to letters
currently on the global variable list VAR.

CANN@T INTEG. A RAT. FUN. A (INTGR)
Integration is allowed for polynomials only.
CANN@T INTEG. WITH RESPECT T¥ A PAR. (INTGR)

Integration is allowed only with respect to letters
currently on the global variable list VAR.

C@NTENTS ¢F SET ¢F PARENTH. IS NULL! (CONEI)
The form () has been found in the input polynomial.
DATA F@RMAT ERRZR (c@NET)
Input polynomial or rational function contains an
unba lanced parent?esis, on one of the sequences ++, +-,
,}, -=, =+, or tt.

DECIMAL EXP@N. PRECLUDES SUBST. (suB)

A number is being substituted into a variable or
parameter which has a floating point exponent.

DIVISI¢N NZT ALLGWED IN EXP@NENTS (CENETI)
A division sign was found in an exponent.
DUPL. DEFN. ‘ (REXEC)

The label in the input line is the same as a previously
used label.

DUPL. DEFN. RETYPE LABEL (REXEC)

The label used on an EDIT or LABEL is a duplication.
Retype the label only on the next line.

EXPENENTS AND NUMERIC COEF. CANNGT HAVE EXPZNENTS ‘ (CONEI)

An exponent expression or a numeric coefficient contains
an exponent.

56

ILLEGAL CHAR. (REXEC)

One or more of the following characters appear in the
input line in an illegal context.
20-=8%$#" 82 7 ()

ILLEGAL EXIT A (REXEC)

A procedure attempted to execute more lines than there
were lines input because procedure runs off the end of
saved statements without encountering and END statement.

ILLEGAL START (REXEC)

The START command can only be used to continue after a
PAUSE inside of a procedure. To execute a block of code
use the TP command.

ILLEGAL T@ (REXEC)

The T@ command cannot be used inside a procedure.
Use START.

ILLEGAL SUBST: VAR. LIST UNDEF. . (REXEC)

A substitution cannot be made unless the variable list
was explicitly given when the RF was named. A WITH modifier
can still be used.

ILLEGAL STRUCTURE (REXEC)

An ALGEBRA statement has illegal syntax, an editing
command has no blank spaces or too many blank spaces, or
the line is completely unrecognizable as either a
statement or a command. ’

INC@NSISTENT WITH (REXEC)

The WITH statement is attempting to replace the same
letter or variable twice.

NEGATIVE @R DECIMAL EXPgNENT PRECLUDES SUBST. @F EXPR. (EXPA)
The coef. expression, variable or parameter into which

a polynomial expression was substituted is raised to a
negative or floating-point power and cannot be expanded.

57

PAR. USED AS VAR. (REXEC)

A letter previously used as a parameter is now being
used as a variable.

P@WER @F -1 PRECLUDES INTEGRATI@N _ (INTGR)
The variable of integration appears in the polynomial
to the -1 power and cannot be integrated, since trans-
cendental functions are not allowed in ALGEBRA.

SUBST. GENERATES DIV. IN EXPgN. , (suB)

The polynomial expression which is being substituted
for a parameter in an exponent has a division in it.

SUBST. GENERATES EXP@N. IN EXP@N. (suB)
The polynomial expressioh which is being substituted
for a parameter in an exponent has parameter in it raised
to a power greater than 1l.

SUBST. GENERATES VAR. IN EXP@N. (suB)

A polynomial expression containing a variable is being
substituted for a parameter which appears in an exponent.

SUBST. @F NULL VALUE ATTEMPTED (suB)
A substitution of a null value for a variable or
parameter has occurred. If a zero is intended it must
be stated explicitly.

SUBST. PUTS C@EF. EXPR. INT@ EXP@N. (suB)
The polynomial expression which is being substituted
for a parameter in an exponent has a coefficient
expression in it.

UNDEF. LABEL (REXEC)
An editing command or & goto uses an undefined label.

UNDEF. PgLY, USED (REXEC)

A polynomial name used in an expression has never been
defined in previously executed statements.

58

UNDEF. VALUE ~ (REXEC)
An error has occurred in the evaluation of an expression
or polynomial. A message from the appropriate subroutine
may precede this statement.

VARIABLES AND/¢R NESTED PARENTHESIS NgT ALLGWED IN EXP@NENTS (C@NEI)

A parenthesized exponent expression has nested parenthesis,
or a variable is used in an exponent.

7.3 System Organization¥

The ALGEBRA I system is made up of a set of packages written
in SNOBOL 67. Most of the packages are written as SNOBOL 67 user
defined functions* for ease in programming and to take advantage
of the local garbage collection feature of SNOBOL 67 (see Ref. 1
for details). A complete list of the various packages showing
names and calling arguments and a short description of their
function is given below. Additional details on system organization,
loading procedure, etc., well be published in another document.
Some indication of the organization of the ALGEBRA I system and
the calls between packages is indicated in Fig. 1. The unstarred
functions in Fig. 1 are required in polynomial manipulations. The
starred funcﬁions are additional requirements for manipulation of
rational functions.

ADD (A ,B) add two RF; returns the sum.

ALPH(A,B','C"') collect and delete the numeric terms in

the alphanumeric string A: return this

result in B, and the sum of the numeric
terms in C.

*An understanding of SNOBOL 67 is assumed in this section.

59

DIF

S

USER

REXEC]:: C@NIE
y
MUL
&l 1B &

] 3
1] CLL 5| SAME
5] MmuL

o
>

Fig. 1 ALGEBRA I System Organization

7.4

CLL(A)
CONEI(A)
CENTE(Z)

DIF(A,T)

EXPA (A, 'T"')

INTGR(A,T)

MINUS (A)

MUL (A, B)

NDVD (A, N)

REXEC

SAME(A,B,'C*','D"')

SUB(A,T,W)

SUBTR(A,B)

Command Summary

60

collect like terms in polynomial A
perform external to internal RF conversion
perform internal to external RF conversion

differentiate RF A with respect to
variable in T

in RF A expand the coefficient expression

if T=0; expand the coefficient expressions
generated by a substitution of an expression
for a variable or parameter if T=l.

integrate polynomial A with respect to
variable in T.

change the sign of each monomial term in
polynomial A.

multiply two RF, return the product.
divide the polynomial in A by the number N.

control the flow of user's program parse

the lines of algebraic expressions, generate
the calls to the appropriate subroutines

and perform the requested editing of
statements.

make polynomials A and B contain the same
set of variables and return these new
polynecmials in C and D respectively.

substitute in RF A the values in the list
W for the variables and/or parameters in
the list T.

subtract two RF, return the difference.

Saved statements may be referenced by:

6l

1. Statement number (statements numbered sequentially

as saved).

First statement saved is number 1.

2. By label or label + positive integer displacement.

3. By $ referring to the last line saved.

The commands available in ALGEBRA I are described below. In

this description p and g are arbitrary statement references in any

of the forms described above. Only the first letter of any command

is required for recognition by the system. Additional letters

are ignored.
C
A

APPEND p

CONSTANTS

DELETE p
DELETE p,q

EDIT p

LABEL p,{label)

C

Q

READ

READ /file/
START p
‘-VP

delete an input character.

prints existing line and accepts addition
by user, addition terminated with CR.

print present contents of global parameter
list.

delete statement p.
delete statements p through g.

replace statement p with statement to be
typed on next line.

add indicated label to beginning of line p
or change label on line p to indicated label.

delete an input line--restart in col. 1
accept statements without immediate execution.

read statements from indicated file and
append to existing saved statements.

restart execution at p when p is inside
a procedure.,

oo

begin execution or restart (not in procedure)
execution at p.

62

VARIABLES print present contents of global variable
list.

WRITE p.q write statements p through q on indicated

ON /file/ disc file (word ON typed by the system).

X execute statements immediately after input

(normal mode).

